Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes

نویسندگان

  • Vishwambhar Rathi
  • Rüdiger L. Urbanke
چکیده

We derive the density evolution equations for non-binary low-density parity-check (LDPC) ensembles when transmission takes place over the binary erasure channel. We introduce ensembles defined with respect to the general linear group over the binary field. For these ensembles the density evolution equations can be written compactly. The density evolution for the general linear group helps us in understanding the density evolution for codes defined with respect to finite fields. We compute thresholds for different alphabet sizes for various LDPC ensembles. Surprisingly, the threshold is not a monotonic function of the alphabet size. We state the stability condition for non-binary LDPC ensembles over any binary memoryless symmetric channel. We also give upper bounds on the MAP thresholds for various non-binary ensembles based on EXIT curves and the area theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Dimensional Bounds on Zm and Binary LDPC Codes with Belief Propagation Decoders: Stability Conditions on Zm Codes and Cutoff Rate Analysis on Non-symmetric Binary Channels

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Z m and binary LDPC codes, assuming belief propagation decoding on memoryless channels. Two noise measures will be considered: the Bhattacharyya noise parameter and the soft bit value for a MAP decoder on the uncoded channel. For Z m LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/...

متن کامل

Finite-Dimensional Bounds on m and Binary LDPC Codes With Belief Propagation Decoders

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of m and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a post...

متن کامل

Finite-Dimensional Bounds on Zm and Binary LDPC Codes with Belief Propagation Decoders

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zm and binary lowdensity parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a post...

متن کامل

On Finite-Dimensional Bounds for LDPC-like Codes with Iterative Decoding

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds assuming iterative decoding. Two noise measures will be considered: the Bhattacharyya noise parameter, and the expected soft bit of the considered channel. An iterative m-dimensional lower bound is derived for Zm LDPC codes in symmetric channels, which gives a sufficient stability condition for Zm LDPC codes...

متن کامل

Density Evolution for Asymmetric Memoryless Channels: The Perfect Projection Condition and the Typicality of the Linear LDPC Code Ensemble

Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0511100  شماره 

صفحات  -

تاریخ انتشار 2005